

Discrete time Markov Chains

Thomas Mountford

EPFL

March 1, 2021

MARKOV CHAINS

Definition: A stochastic process is a collection of random variables (or random elements) $\{X_t\}_{t \in T}$ defined on the same probability space.

(Usually we take $T = \mathbb{N}$ or \mathbb{R} . We will consider Markov chains $\{X_n\}_{n \geq 0}$ taking values a finite or countable state space I . Usually we consider $I = \{1, 2 \cdots N\}$ or $I = \mathbb{Z}$ But not always.

Preparatory Definitions: A *probability vector* λ on I is a function

$\lambda : I \rightarrow [0, 1]$ so that $\sum_{i \in I} \lambda_i = 1$.

A matrix p_{ij} on I is a *stochastic matrix* or *transition matrix* if for every $i \in I$, $\sum_{j \in I} p_{ij} = 1$. For I infinite and P a matrix on I P^2 is not in general defined but it is for stochastic matrices.

Markov Chains: definition

A stochastic process $\{X_n\}_{n \geq 0}$ is a (λ, P) Markov chain on I for λ a probability vector and P a stochastic matrix on I if

(i) $\mathbb{P}(X_0 = i) = \lambda_i \forall i,$

(ii) For any n and

$$i_0, i_1, \dots, i_n, \quad \mathbb{P}(X_{n+1} = j \mid X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = p_{i_n j}$$

Condition (ii) is often expressed as X_{n+1} is conditionally independent of (X_0, X_1, \dots, X_n) given $X_n = i_n$ for every $i_n, j \in I$.

We say $\{X_n\}_{n \geq 0}$ is a Markov chain (on I) if it is a (λP) Markov chain for some λ and P . λ is called the initial distribution (for $\{X_n\}_{n \geq 0}$) and P is the transition matrix.

We can similarly speak of Markov chains $\{X_n\}_{0 \leq n \leq N}$

An equivalence

Theorem

$\{X_n\}_{n \geq 0}$ is a (λ, P) Markov chain if and only if $\forall n, i_0, i_1 \dots i_n \in I$

$$\mathbb{P}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = \lambda_{i_0} p_{i_0 i_1} p_{i_1 i_2} \dots p_{i_{n-1} i_n}$$

$\{X_n\}_{n \geq 0}$ is a (λ, P) Markov chain, we prove the claimed probability by induction on n . For $n = 0$ it is just the definition of the initial distribution λ . Suppose the claim is true for n , then by (ii)

$$\mathbb{P}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n, X_{n+1} = i_{n+1}) =$$

$$\mathbb{P}(X_{n+1} = i_{n+1} \mid X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) \mathbb{P}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)$$

$$= p_{i_n i_{n+1}} \mathbb{P}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)$$

$$= p_{i_n i_{n+1}} \lambda_{i_0} p_{i_0 i_1} p_{i_1 i_2} \dots p_{i_{n-1} i_n}$$

Proof continued

Conversely, given the condition applied with $n = 0$, we have that
 $\forall i, \mathbb{P}(X_0 = i) = \lambda_i$. That is condition (i) Equally for condition (ii)
 $\forall n, i_0, i_1 \dots i_n \in I$

$$\frac{\mathbb{P}(X_{n+1} = i_{n+1} \mid X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)}{\mathbb{P}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)} = p_{i_n i_{n+1}}$$

The Markov Property

Theorem

For $\{X_n\}_{n \geq 0}$ a (λ, P) Markov chain, suppose that $\mathbb{P}(X_m = i) > 0$, then conditional on event $\{X_m = i\}$, the process

$$Z_n = X_{m+n} \quad n \geq 0$$

is a (δ_i, P) Markov chain independent of (X_0, X_1, \dots, X_m)

Define events

- $A = \{X_0 = i_0, X_1 = i_1, \dots, X_m = i_m (= i)\}$
- $B = \{X_m = j_0 (= i), X_{m+1} = j_1, \dots, X_{m+n} = j_n\}$
- $C = \{X_m = i\}$

$$\mathbb{P}(B \mid A \cap C) = \frac{\mathbb{P}(B \cap A \cap C)}{\mathbb{P}(A \cap C)} = p_{j_0 j_1} p_{j_1 j_2} p_{j_{n-1} j_n}$$

$= \mathbb{P}(B \mid C) = \mathbb{P}(Z_0 = j_0, Z_1 = j_1, \dots, Z_n = j_n)$ for (δ_i, P) MC.

λ is not important

So we can apply the Theorem with $m = 0$. For any event A depending on X_0, X_1, \dots , we have by Total Probability

$$\begin{aligned}\mathbb{P}(A) &= \sum_{i \in I} \mathbb{P}(X_0 = i) \mathbb{P}(A \mid X_0 = i) \\ &= \sum_{i \in I} \lambda_i \mathbb{P}_i(A)\end{aligned}$$

where \mathbb{P}_i is the probability for a (δ_i, P) Markov chain. That is if we know the probabilities \mathbb{P}_i , then we know the probabilities arising out of all (λ, P) Markov chains.

Powers of transition matrices.

Consider a (δ_i, P) Markov chain for fixed i . We know $\mathbb{P}_i(X_1 = j) = p_{ij}$. By the law of total probability

$$\mathbb{P}_i(X_2 = k) = \sum_j \mathbb{P}_i(X_1 = j) \mathbb{P}_i(X_2 = k \mid X_1 = j) =$$

$$\sum_j \mathbb{P}_i(X_1 = j) p_{jk} = \sum_j p_{ij} p_{jk}$$

$= P_{ik}^2 = p_{ik}^2$. With an identical argument

$$\mathbb{P}_i(X_3 = k) = \sum_j \mathbb{P}_i(X_1 = j) \mathbb{P}_i(X_3 = k \mid X_1 = j) =$$

$$\sum_j \mathbb{P}_i(X_2 = j) p_{jk} = \sum_j p_{ij}^2 p_{jk}$$

$= P_{ik}^3$. For a (λ, P) Markov chain,

$$\mathbb{P}_i(X_r = k) = \sum_i \lambda_i P_{ik}^r$$

Consequences

Theorem

For $\{X_n\}_{n \geq 0}$ a (λ, P) Markov chain, and r a strictly positive integer, the process

$$Z_n = X_{nr}, \quad n \geq 0$$

is a (λ, P^r) Markov chain.

Theorem

For $\{X_n\}_{n \geq 0}$ a (λ, P) Markov chain, and $r_1 < r_2 < \dots < r_k$

$$\mathbb{P}_i(X_{r_1} = i_1, X_{r_2} = i_2, \dots, X_{r_1 k} = i_k) = \sum_i \lambda_i P_{ii_1}^{r_1} P_{i_1 i_2}^{r_2 - r_1} \dots P_{i_{k-1} i_k}^{r_k - r_{k-1}}$$