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MARKOV CHAINS

Definition: A stochastic process is a collection of random variables (or
random elements) {Xt}t∈T defined on the same probability space.
(Usually we take T = N or R. We will consider Markov chains {Xn}n≥0
taking values a finite or countable state space I . Usually we consider
I = {1, 2 · · ·N} or I = Z But not always.
Preparatory Definitions: A probability vector λ on I is a a function
λ : I → [0, 1] so that

∑
I∈I λi = 1.

A matrix pij on I is a stochastic matrix or transition matrix if for every
I ∈ I ,

∑
j∈I pij = 1. For I infinite and P a matrix on I P2 is not in

general defined but it is for stochastic matrices.



Markov Chains: definition

A stochastic process {Xn}n≥0 is a (λ,P) Markov chain on I for λ a
probability vector and P a stochastic matrix on I if

(i) P(X0 = i) = λi∀I ,

(ii) For any n and
i0, i1, · · · in, P(Xn+1 = j | X0 = i0,X1 = i1, · · ·Xn = in) = pinj

Condition (ii) is often expressed as Xn+1 is conditionally independent of
(X0,X1, · · ·Xn) given Xn = in for every in, j ∈ I .
We say {Xn}n≥0 is a Markov chain (on I ) if it is a (λP) Markov chain
forsome λ and P . λ is called the initial distribution (for {Xn}n≥0 ) and P
is the transition matrix.
We can similarly speak of Markov chains {Xn}0≤n≤N



An equivalence

Theorem
{Xn}n≥0 is a (λ,P) Markov chain if and only if ∀n, i0, i1 · · · in ∈ I

P(X0 = i0,X1 = i1, · · ·Xn = in) = λi0pi0i1pi1i2 · · · pin−1in

{Xn}n≥0 is a (λ,P) Markov chain, we prove the claimed probability by
induction on n. For n = 0 it is just the definition of the initial distribution
λ. Suppose the claim is true for n, then by (ii)

P(X0 = i0,X1 = i1, · · ·Xn = in,Xn+1 = in+1) =

P(Xn+1 = in+1 | X0 = i0,X1 = i1, · · ·Xn = in)P(X0 = i0,X1 = i1, · · ·Xn = in)

= pinin+1P(X0 = i0,X1 = i1, · · ·Xn = in)

= pinin+1 λi0pi0i1pi1i2 · · · pin−1in



Proof continued

Conversely, given the condition applied with n = 0, we have that
∀i , P(X0 = i) = λi . That is condition (i) Equally for condition (ii)
∀n, i0, i1 · · · in ∈ I

P(Xn+1 = in+1 | X0 = i0,X1 = i1, · · ·Xn = in) =

P(X0 = i0,X1 = i1, · · ·Xn = in,Xn+1 = in+1)

P(X0 = i0,X1 = i1, · · ·Xn = in)
= pinin+1



The Markov Property
Theorem
For {Xn}n≥0 a (λ,P) Markov chain, suppose that P(Xm = i) > 0, then
conditional on event {Xm = i}, the process

Zn = Xm+n n ≥ 0

is a (δi ,P) Markov chain independent of (X0,X1, · · ·Xm)

Define events

• A = {X0 = i0,X1 = i1, · · ·Xm = im(= i)}

• B = {Xm = j0(= i),Xm+1 = j1, · · ·Xm+n = jn}

• C = {Xm = i)}

P(B | A ∩ C ) =
P(B ∩ A ∩ C )

P(A ∩ C )
= pj0j1pj1j2pjn−1jn

=P(B | C ) = P(Z0 = j0,Z1 = j1, · · ·Zn = jn) for (δi ,P) MC.



λ is not important

So we can apply the Theorem with m = 0. For any event A depending on
X0,X1, · · · , we have by Total Probability

P(A) =
∑
i∈I

P(X0 = i)P(A | X0 = i)

=
∑
i∈I

λiPi(A)

where Pi is the probability for a (δi ,P) Markov chain. That is if we know
the probabilities Pi , then we know the probabilities arising out of all (λ,P)
Markov chains.



Powers of transition matrices.
Consider a (δi ,P) Markov chain for fixed i . We know Pi(X1 = j) = pij .
By the law of total probability

Pi(X2 = k) =
∑
j

Pi(X1 = j)Pi(X2 = k | X1 = j) =

∑
j

Pi(X1 = j)pjk =
∑
j

pijpjk

= P2
ik = p2ik . With an identical argument

Pi(X3 = k) =
∑
j

Pi(X12 = j)Pi(X3 = k | X12 = j) =

∑
j

Pi(X2 = j)pjk =
∑
j

p2ijpjk

= P3
ik . For a (λ,P) Markov chain,

Pi(Xr = k) =
∑
i

λiP
r
ik



Consequences

Theorem
For {Xn}n≥0 a (λ,P) Markov chain, and r a strictly positive integer, the
process

Zn = Xnr , n ≥ 0

is a (λ,P r ) Markov chain.

Theorem
For {Xn}n≥0 a (λ,P) Markov chain, and r1 < r2 < · · · < rk

Pi(Xr1 = i1,Xr2 = i2, · · ·Xr1k = ik) =
∑
i

λiP
r1
ii1
P r2−r1
i1i2
· · ·P rk−rk−1

ik−1ik


